A. CHEHAB
 M. MANSOUR
 DEPARTMENT OF ELECTRICAL AND COMPUTER EGINEERING
 AMERICAN UNIVERSITY OF BEIRUT
 FALL TERM 2005-2006
 MIDTERM I

EECE320 - DIGITAL SYTEMS DESIGN

NOVEMBER 24, 2005

NAME: \qquad ID: \qquad

COURSE SECTION: SECTION 1 (PROF. CHEHAB)
SECTIONS 2 \& 3 (PROF. MANSOUR)

INSTRUCTIONS:
o THE EXAM IS CLOSED BOOK/CLOSED NOTES. THE DURATION IS 1.5 HOURS.
o CALCULATORS ARE NOT ALLOWED.
o WRITE YOUR NAME AND ID NUMBER IN THE SPACE PROVIDED ABOVE.
o INDICATE THE SECTION YOU ARE REGISTERED IN.
o PROVIDE YOUR ANSWERS IN THE SPACE PROVIDED ON THE QUESTION SHEET.
O THE SCRATCH BOOKLET WILL NOT BE CONSIDERED IN GRADING.
o BE AS NEAT AND CLEAR AS POSSIBLE.

Problem	Total Points	Earned Points
1	6	
2	6	
3	6	
4	6	
5	8	
6	8	
7	12	
8	16	
9	12	
10	10	
11	10	
Total	100	

Problem 1: [6 points]

Find the base b in the case where: $(859)_{10}=(5 B 7)_{b}$
$B=$ \qquad

Problem 2: [6 points]

Perform the operation $87-99$ in two's complement representation using 8 bits.

Problem 3: [6 points]

Find the radix complement and the diminished radix complement for the number $(4723)_{8}$.

Radix complement = \qquad Diminished radix complement $=$ \qquad

Problem 4: [6 points]

How many minterms are included in the following 4-variable function and what are they?

$$
\text { F(A,B,C,D) = ((A+B)' + (C+D)' })^{\prime}
$$

The minterms are: \qquad

Problem 5: [8 points]

Consider the function: $F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}+$ $A B C^{\prime} D+A B C D^{\prime}+A B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C D^{\prime}$
a) Mark the distinguished- 1 cells on the map.
b) What is a minimum SOP expression for F ?

Problem 6: [8 points]

Draw the gate implementation of the expression $\mathrm{F}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }^{\prime}\right)\left(\mathrm{X}_{2}+\mathrm{X}_{3}\right)$
a) What type of hazard is possible with this implementation?
b) Indicate which transition causes such hazard
c) How do you modify the implementation to obtain a hazard-free circuit?

Problem 7: [12 points]

Design a circuit to convert from BCD to EXCESS-3 representation. Start by filling out the truth table, then fill the K-maps, then minimize the expressions for E3, E2, E1, and E0.

B3	B2	B1	B0	E3	E2	E1	E0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				

$\mathrm{E} 3=$ \qquad

$\mathrm{E} 1=$ \qquad

$\mathrm{E} 2=$ \qquad
$\mathrm{E} 0=$ \qquad

Problem 8: [16 points]

Write a VHDL entity and behavioral architecture for a circuit that perform the conversion indicated in the previous problem. The circuit has inputs (B3, B2, B1, B0) and outputs (E3, E2, E1, E0). In addition, it has an active-low enable signal (EN_L). Then, write a testbench to the test your circuit with the following combinations:

EN_L $=1$, B3B2B1B0 $=0110$
EN_L $=0$, B3B2B1B0 $=0111$
EN_L $=0, \mathrm{~B} 3 \mathrm{~B} 2 \mathrm{~B} 1 \mathrm{~B} 0=1000$
EN_L $=0$, B3B2B1B0 $=1001$
\qquad

Page 6 of 11

Problem 9: Binary Sorting [12 points]
Let $\mathbf{A}=\mathbf{a}_{\mathbf{1}} \mathbf{a}_{\mathbf{0}}$ and $\mathbf{B}=\mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}$ be two unsigned 2-bit binary numbers.
a) Design a logic circuit that sorts the two inputs, putting the maximum at the top output and the minimum at the bottom output, i.e., $\mathbf{M X}=\mathbf{m x}_{\mathbf{1}} \mathbf{m} \mathbf{x}_{\mathbf{0}}=\max (\mathbf{A}, \mathbf{B})$, and $\mathbf{M N}=\mathbf{m n}_{\mathbf{1}} \mathbf{m n}_{\mathbf{0}}=\min (\mathbf{A}, \mathbf{B})$. Write down Boolean equations and draw the logic diagram.

(Problem 9(a) cont'd)
b) Using the block that you designed in part a), design a logic circuit that sorts four unsigned 2-bit binary numbers $\mathbf{A}=\mathbf{a}_{\mathbf{1}} \mathbf{a}_{\mathbf{0}}, \mathbf{B}=\mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}, \mathbf{C}=\mathbf{c}_{\mathbf{1}} \mathbf{c}_{\mathbf{0}}, \mathbf{D}=\mathbf{d}_{\mathbf{1}} \mathbf{d}_{\mathbf{0}}$ in descending order, putting the maximum at the top and the minimum at the bottom, i.e., MAX $\geq \mathbf{M} 3 \geq \mathbf{M} 2 \geq$ MIN. Label all connections clearly.

Problem 10: Multiplexer function [10 points]
What Boolean function $F(A, B, C, D)$ does the following circuit implement? Write your answer as a canonical POS expression.

$F=$ \qquad

Problem 11: 4-to-16 Decoder [10 points]

In this problem, you are asked to design a 4-to-16 decoder with enable as shown below. You have available only two 2-to-4 decoders with enable and active-low outputs, and a set of NOR gates. Show how to design the 4-to-16 decoder using two 2-to-4 decoders and NOR gates. Label all your connections clearly.

