A. CHEHAB M. MANSOUR

DEPARTMENT OF ELECTRICAL AND COMPUTER EGINEERING AMERICAN UNIVERSITY OF BEIRUT FALL TERM 2005-2006 **MIDTERM I**

EECE320 - DIGITAL SYTEMS DESIGN

NOVEMBER 24, 2005

<u>NAME</u>:_____

ID: _____

COURSE SECTION: SECTION 1 (PROF. CHEHAB)

SECTIONS 2 & 3 (PROF. MANSOUR)

INSTRUCTIONS:

- $\circ~$ THE EXAM IS CLOSED BOOK/CLOSED NOTES. THE DURATION IS <u>1.5 HOURS</u>.
- CALCULATORS ARE NOT ALLOWED.
- \circ $\;$ WRITE YOUR NAME AND ID NUMBER IN THE SPACE PROVIDED ABOVE.
- INDICATE THE SECTION YOU ARE REGISTERED IN.
- $\circ~$ PROVIDE YOUR ANSWERS IN THE SPACE PROVIDED ON THE QUESTION SHEET.
- THE SCRATCH BOOKLET <u>WILL NOT</u> BE CONSIDERED IN GRADING.
- BE AS NEAT AND CLEAR AS POSSIBLE.

Problem	Total Points	Earned Points
1	6	
2	6	
3	6	
4	6	
5	8	
6	8	
7	12	
8	16	
9	12	
10	10	
11	10	
Total	100	

Problem 1: [6 points]

Find the base b in the case where: $(859)_{10} = (5B7)_b$

B = _____

Problem 2: [6 points]

Perform the operation 87 - 99 in two's complement representation using 8 bits.

Problem 3: [6 points]

Find the radix complement and the diminished radix complement for the number $(4723)_8$.

Radix complement = _____ Diminished radix complement = _____

Problem 4: [6 points]

How many minterms are included in the following 4-variable function and what are they?

F(A,B,C,D) = ((A+B)' + (C+D)')'

The minterms are:

Problem 5: [8 points]

Consider the function: F = A'B'C'D' + A'B'C'D + A'B'CD + A'B'CD' + A'BCD' + ABC'D + ABCD' + ABCD' + AB'C'D' + AB'CD'

Problem 6: [8 points]

Draw the gate implementation of the expression $F = (X_1+X_2')(X_2+X_3)$

a) What type of hazard is possible with this implementation?

b) Indicate which transition causes such hazard

c) How do you modify the implementation to obtain a hazard-free circuit?

Problem 7: [12 points]

Design a circuit to convert from BCD to EXCESS-3 representation. Start by filling out the truth table, then fill the K-maps, then minimize the expressions for E3, E2, E1, and E0.

B3	B2	B1	B0	E3	E2	E1	E0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				

E0 = _____

Problem 8: [16 points]

Write a VHDL entity and **behavioral** architecture for a circuit that perform the conversion indicated in the previous problem. The circuit has inputs (B3, B2, B1, B0) and outputs (E3, E2, E1, E0). In addition, it has an active-low enable signal (EN_L). Then, write a testbench to the test your circuit with the following combinations:

 $EN_L = 1, B3B2B1B0 = 0110$ $EN_L = 0, B3B2B1B0 = 0111$ $EN_L = 0, B3B2B1B0 = 1000$ $EN_L = 0, B3B2B1B0 = 1001$

Problem 9: Binary Sorting [12 points]

Let $A=a_1a_0$ and $B=b_1b_0$ be two unsigned 2-bit binary numbers.

a) Design a logic circuit that sorts the two inputs, putting the maximum at the top output and the minimum at the bottom output, i.e., MX=mx₁mx₀=max(A,B), and MN=mn₁mn₀=min(A,B). Write down Boolean equations and draw the logic diagram.

(Problem 9(a) cont'd)

b) Using the block that you designed in part a), design a logic circuit that sorts four unsigned 2-bit binary numbers $A=a_1a_0$, $B=b_1b_0$, $C=c_1c_0$, $D=d_1d_0$ in descending order, putting the maximum at the top and the minimum at the bottom, i.e., $MAX \ge M3 \ge M2 \ge MIN$. Label all connections clearly.

Problem 10: Multiplexer function [10 points]

What Boolean function F(A,B,C,D) does the following circuit implement? Write your answer as a canonical POS expression.

Problem 11: 4-to-16 Decoder [10 points]

In this problem, you are asked to design a 4-to-16 decoder with enable as shown below. You have available <u>only two</u> 2-to-4 decoders with enable and <u>active-low</u> outputs, and a set of NOR gates. Show how to design the 4-to-16 decoder using two 2-to-4 decoders and NOR gates. Label all your connections clearly.

